

O Grupo EDP...

CONTRACTOR OF THE PROPERTY OF

Potência instalada: Installed capacity Hídrica: 426 MW

Hidrica: 426 MW Hydro Térmica: 2947 MW

Thermal Nuclear: 156 MW Nuclear

Colaboradores: 1274 Employees

EDP Renováveis (Europa)

EDP Renewables (Europe)

(França, Bélgica, Itália, Espanha, Grécia, Roménia, Reino Unido, Portugal, Polónia) (France, Belgium, Italy, Spain, Greece,

Romania, United Kingdom, Portugal, Poland)

Potência instalada:

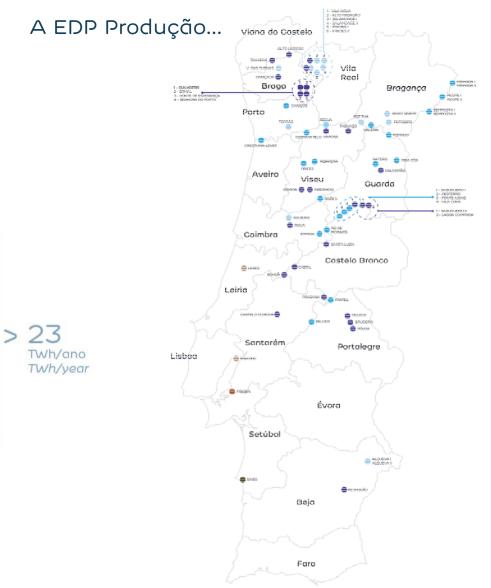
nstalled capacity

Portugal Portugal: 1253 MW Espanha Spain: 2244 MW Resto da Europa

Rest of Europe: 1564 MW

Colaboradores:

Portugal Portugal: 73 Espanha Spain: 406 Resto da Europa Rest of Europe: 200


A EDP gere os seus ativos graças a uma equipa altamente qualificada EDP manages its assets with a highly qualified team

16 PAÍSES

COUNTRIES

41 NACIONALIDADES

NATIONALITIES

EDP Produção é a empresa do Grupo EDP detentora da geração convencional em Portugal

Centrais Hídricas Hydro Power Plants

- Central de albufeira
- Water reservoir hydro power plant
- Central de flo de água
 Run-of-river power station
- Central hidroelétrica com bombagem
 Hydro power plant with reverse pumping

Centrais Térmicas Thermal Power Plants

- Central a carvão
- Coal thermal power plant
- Central de ciclo combinado a gás natural Combined cycle gas power plant
- Central de cogeração
 Cogeneration power plant

Dados 2017 Data 2017

Centrals hidroelétricas

Centrals termoelétricas

Installed capacity 3236 MW

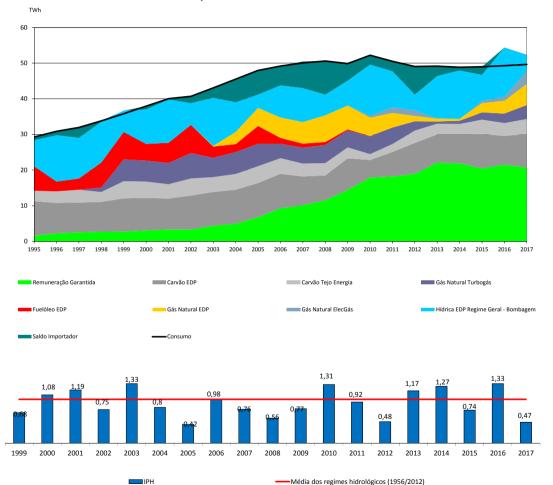
6721 MW

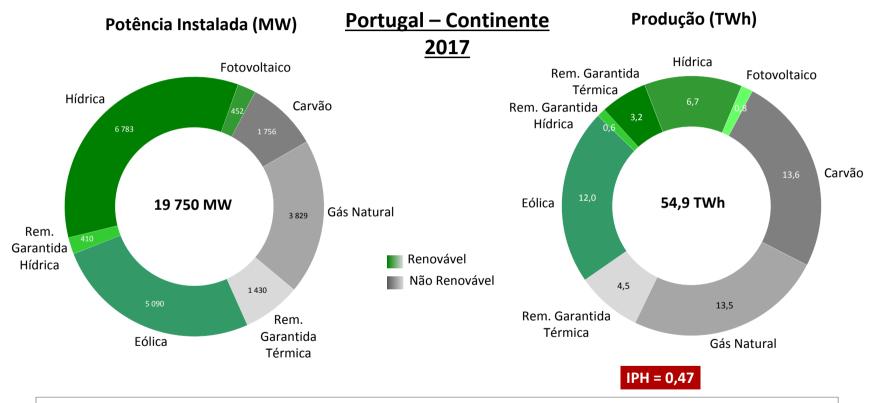
EDP Produção - Plano de investimento 2007-2017

A EDP Produção executou em Portugal o maior plano de investimento de geração na Europa, entre 2007 e 2017, resultando na construção de uma CCGT, três novos aproveitamentos hidroeléctricos e 5 reforços de potência.

Aumento da capacidade instalada

3,140 MW

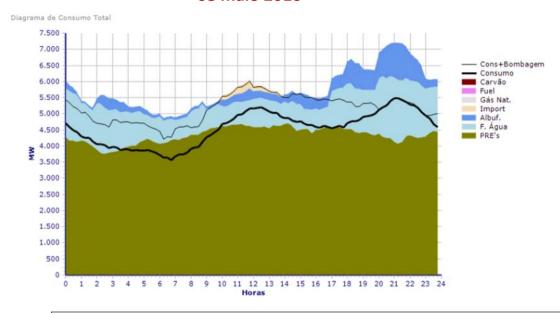

Investimento total 2,850 M€


Em Portugal Continental a contribuição das Energias Renováveis tem sido crescente, em especial a eólica

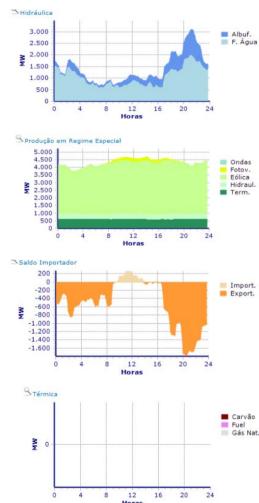
Emissão em 2017 (GWh)		
Produção EDP Regime Geral	22 093	
Hídrica	6 726	
Térmica	15 367	
Produção Regime Geral (Outras)	11 719	
Carvão Tejo Energia	4 182	
Gás Natural Turbogás	3 902	
ElecGás	3 635	
Remuneração Garantida	20 711	
Eólica	11 974	
Mini-Hídrica	613	
Fotovoltaico	833	
Ondas	0	
Biomassa	2 810	
Outras não renováveis	4 481	
Saldo Importador	-2 684	
Consumo em Bombagem	2 223	
Consumo	49 617	

Fonte REN

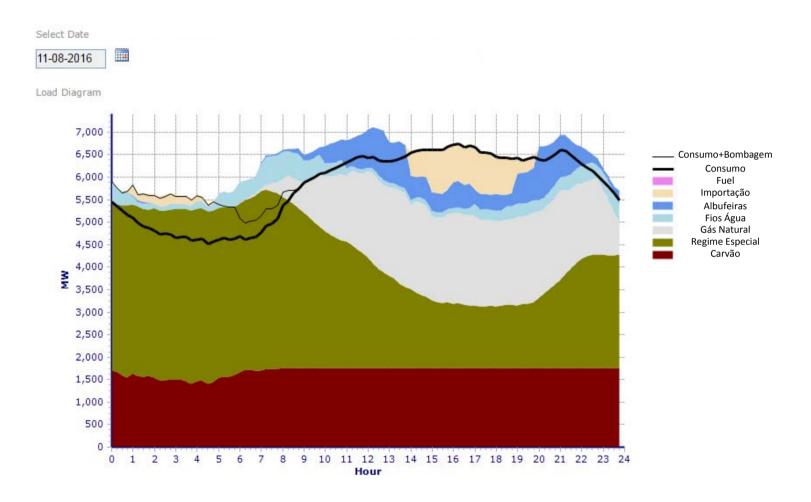
Atualmente as Energias Renováveis representaram entre 42% e 53% da produção de eletricidade (2017 e 2016 respetivamente)

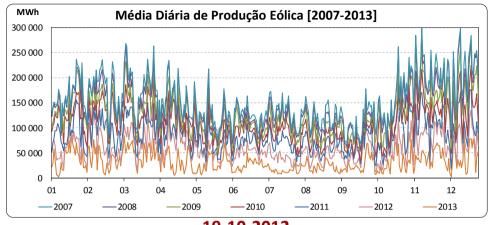


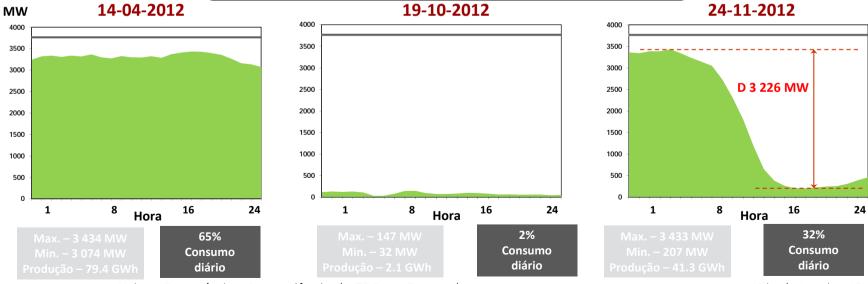
Em 2017, 42% da produção foi de origem renovável.


Mas num ano mais húmido, como o de 2016 (IPH=1,33) essa contribuição sobe para 53%.

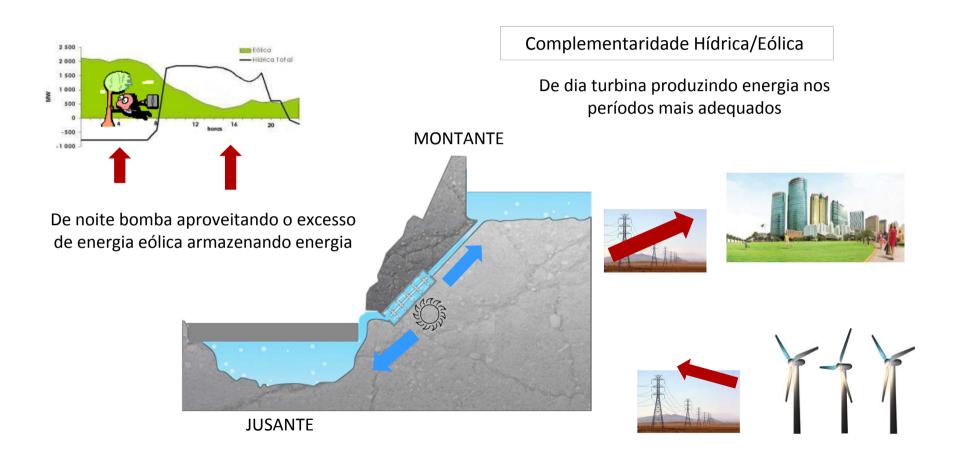
Recentemente ocorreram situações em que 100% do consumo foi abastecido por Energias Renováveis


08 maio 2016


- No dia 8 de maio de 2016 a satisfação do consumo na emissão foi 100% realizado através de energias renováveis.
- Apenas entre as 10h e as 14h foi necessário a importação para satisfazer o consumo das bombagens hidroelétricas.
- A produção das grandes centrais térmicas nesse dia em Portugal foi nula.



Mas no verão (período seco) são necessárias as centrais termoelétricas



O perfil da produção eólica é muito variável

A bombagem desempenha um papel essencial na gestão da intermitência das renováveis

Enquadramento Legislativo das Concessões de Domínio Hídrico

De acordo com a atual legislação, os prazos das concessões podem ser prorrogados através da realização de investimentos de aumento de Potência

Diretiva nº 2000/60/CE
Parlamento Europeu e do Conselho
23 de outubro de 2000

Lei quadro da água (Lei 58/2005, de 29/dez) e legislação complementar (Decreto-Lei 226-A/2007) ... "os prazos das concessões podem ser prorrogados" ...

$$Pro = (N - t) \times \frac{\Delta Pot}{Pot}$$

Pro - Prorrogação (anos)

(Diretiva Quadro da Água)

- N Número total de anos da concessão original de utilização do domínio hídrico
- t Número de anos remanescentes até ao final da concessão original de utilização do domínio hídrico
- Pot Potência elétrica da central antes do reforço de potência
- ΔPot Potência elétrica adicional devida ao reforço de potência

Exemplo:

Picote

2042 até 2063

Início Concessão - 1995

Fim Concessão - 2042

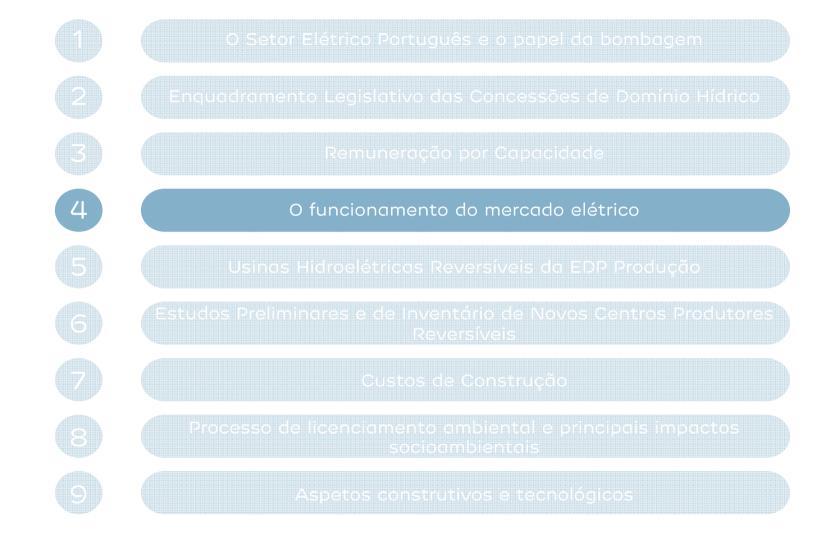
Início Explor. Reforço - 2012

Pot. antes Reforço - 195 MW

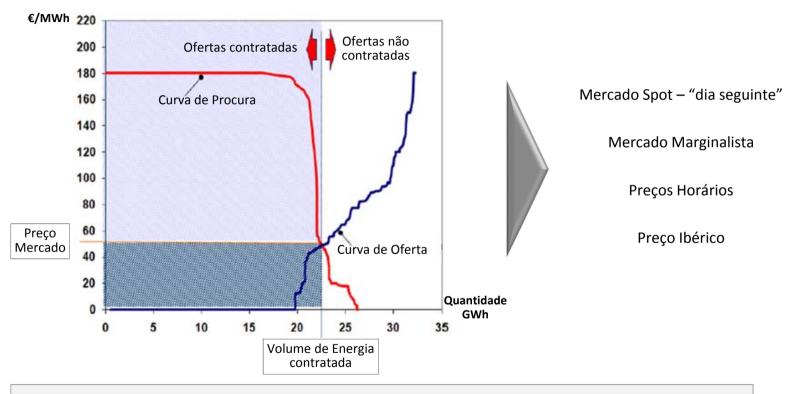
Potência Reforço - 246 MW

$$Pro = (47 - 31) \times \left(\frac{246}{195}\right)$$

Pro = 20 anos (2063)


Garantia de Potência

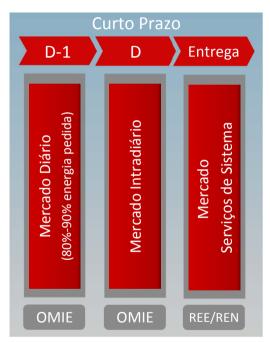
Incentivo ao investimento das Novas Usinas Hidroelétricas


	Potência Instalada Líquida (MW)	Valor de referência da Garantia de Potência (€/kW)	Atual previsão da data de Entrada em Serviço	Montante Anual (M€)
Alqueva II	256	11,0	dezembro 2012	2,8
Baixo Sabor	186	23,1	janeiro 2015 - Jusante fevereiro 2016 - Montante	4,3
Ribeiradio	75	23,1	maio 2015	1,7
Venda Nova III	779	11,0	janeiro 2017	8,6
Salamonde II	223	11,6	janeiro 2016	2,6
Foz Tua	266	13,0	abril 2017	3,5
Fridão	238	11,0	outubro 2027	2,6

- O incentivo vigora durante os 10 primeiros anos;
- Há uma penalização das decisões de adiamento dos investimentos e um prémio pela antecipação;
- Os reforços de potência com bombagem recebem apenas metade do incentivo;
- Os reforços de potência sem bombagem não têm incentivo.

Para um ano correspondente a um regime hidrológico médio, estima-se que as receitas de Garantia de Potência correspondam a cerca de 15% a 21% do total das receitas.


Os Preços Pool do Mercado Ibérico resultam do cruzamento entre a procura e a oferta em cada hora, como acontece noutros mercados



A bombagem resulta da arbitragem de preços no mercado de energia

Mercado Ibérico de Eletricidade (MIBEL)

Os Mercados físicos são constituídos por Mercado diário (dia seguinte), Mercados Intradiários e Mercados de Serviços de Sistema

O Mercado Ibérico é um dos mais líquidos na Europa, sendo os preços comparáveis com os de outros mercados. De facto, na maioria dos anos, o MIBEL regista preços inferiores à média dos preços para os principais mercados Europeus. Adicionalmente, enquanto os preços no MIBEL variam entre os 0 e os 180 €/MWh, no cenário Europeu as oscilações são maiores, entre -500 e +3000€/MWh.

OMIP – Operador do Mercado Ibérico de Energia (Portugal) OMIE – Operador do Mercado Ibérico de Energia (Espanha) REE e REN – Operadores de Sistema de Espanha e Portugal

Há Mercados Físicos e Financeiros...

Os Mercados de Energia têm duas tipologias:

FÍSICOS

- Nestes mercados é obrigatória a entrega física da energia;
- Curto prazo (spot, day-head);
- São sujeitos a validações técnicas para garantir a segurança de abastecimento.

FINANCEIROS

- Mercados para negociação a prazo;
- Estes mercados são utilizados para cobertura de risco (hedging) e negociação/especulação;
- Subdividem-se em topologias distintas:
 - –Mercados Organizados (futuros);
 - *–Over-the-Counter* (OTC).

Fonte: UNGE/EDP

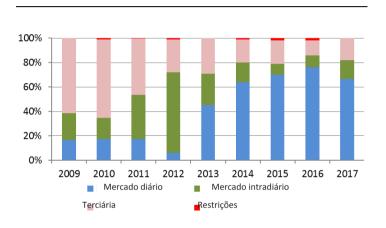
Estratégica de Bombagem Hídrica

Mercado diário

- Oportunidades baseadas no spread peak/off-peak
 - A água é bombada durante os períodos de preços baixos de eletricidade (geralmente durante a noite) e turbinada durante os períodos de preços altos (geralmente em horas de ponta).

Intradiário e Serviços de Sistema

- Oportunidades adicionais se os preços intradiários descerem
- Oportunidades adicionais para períodos de baixos níveis de reserva
 - Além da arbitragem de preços, as centrais equipadas com bombagem têm vindo a ser cada vez mais lucrativas nos mercados de serviços de sistema
 - A bombagem fornece flexibilidade ao operador de sistema → A Bombagem pode ser utilizada como forma de evitar a redução da produção de uma Central


Rendimento

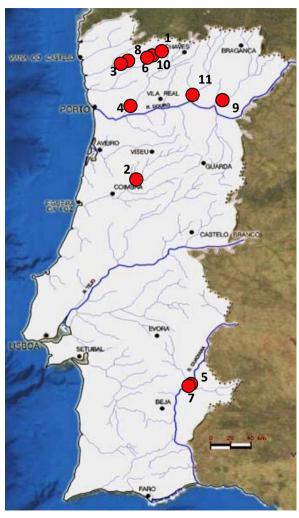
	bomba (veio)	bomba global	ciclo turbina/
		(emissão) *	bomba
Alqueva 2	93%	92%	83%
Frades 2	95%	93%	86%

^{*} Excluindo perda de carga no CH e perdas nos barramentos

A Bombagem tem tido um papel importante nos mercados de serviços de sistema e com custos abaixo dos preços do mercado diário

Participação da Bombagem em diferentes mercados

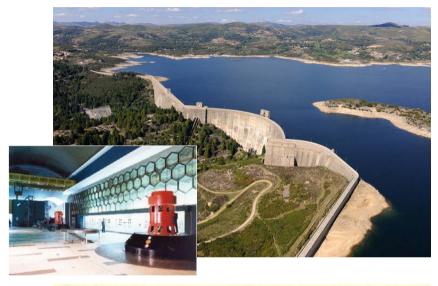
Custo Unitário Final de Bombagem em Portugal

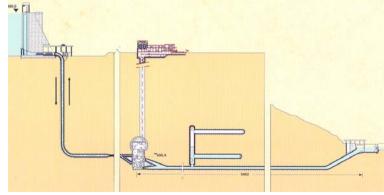


No ano de 2016 (IPH=1,33) as receitas com Serviços de Sistema corresponderam a cerca de 13% do total das receitas. No ano de 2017 (IPH=0,42) este valor foi de 12,4%.

Desta forma, nos anos de 2016 e 2017, as receitas com Serviços de Sistema corresponderam, em média, a cerca de 12,8% do total das receitas.

Usinas Hidroelétricas Reversíveis da EDP Produção

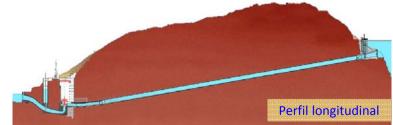

Usinas reversíveis em exploração:


- 1. Alto Rabagão (1964)
 - 2. Aguieira (1981)
- 3. Vilarinho das Furnas II (1987)
 - 4. Torrão (1988)
 - 5. Alqueva (2003)
 - 6. Venda Nova II (2005)
 - 7. Alqueva II (2012)
 - 8. Salamonde II (2016)
- 9. Baixo Sabor e Feiticeiro (2016)
 - 10. Venda Nova III (2017)
 - 11. Foz Tua (2017)

Usinas Hidroelétricas Reversíveis da EDP Produção Alto Rabagão

O aproveitamento está situado no rio Rabagão. A central é subterrânea em caverna, equipada com dois grupos reversíveis, e está implantada a 130 m de profundidade. O túnel de restituição tem cerca de 6 km, dotado de chaminé de equilíbrio.

Principais Indicadores		
Entrada em Serviço	1964	
Potência	68 MW	
Produtibilidade líquida bombagem	114 GWh	
Queda	180 m	
Caudal turbinamento/bombagem	52,8/36 m ³ /s	
Volume útil	550,1 hm ³	



Usinas Hidroelétricas Reversíveis da EDP Produção Foz Tua

O aproveitamento está situado no rio Tua. Inclui uma barragem, uma central subterrânea em poço, equipada com dois grupos reversíveis, e um circuito hidráulico constituído por dois túneis.

Principais Indicadores		
Início da Construção	2011	
Entrada em Serviço	2017	
Potência	270 MW	
Produtibilidade Média Anual	660 GWh	
Produtibilidade líquida bombagem	275 GWh	
Queda	93,6 m	
Caudal turbinamento/bombagem	310/250 m ³ /s	
Volume útil	69 hm³	

Usinas Hidroelétricas Reversíveis da EDP Produção Foz Tua

Estudos Preliminares e de Inventário de Novos Centros Produtores Reversíveis

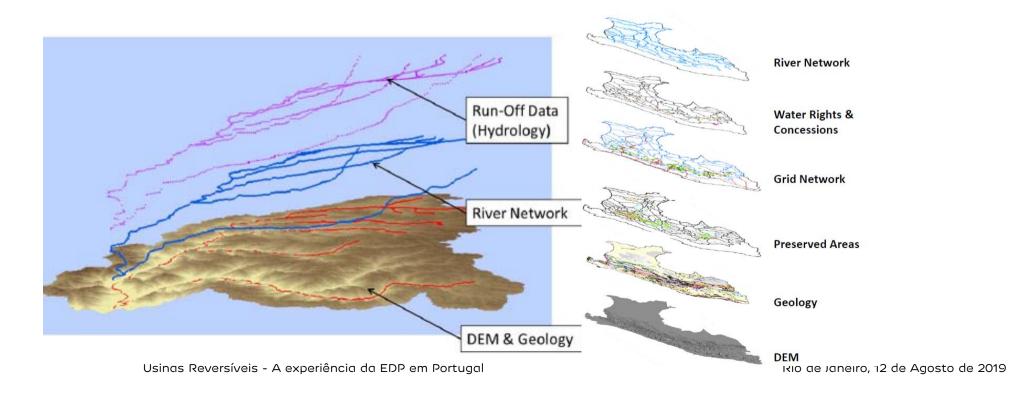
Mapeamento do potencial para implantação de usinas reversíveis – Estudos e Metodologias

FASE 1 – SELEÇÃO DE BACIAS HIDROGRÁFICAS

- Ranking baseado (p. ex.) no declive médio e no comprimento dos cursos de água importância do potencial hídrico / disponibilidade hídrica é de segunda ordem;
- Combinação dos diversos critérios.

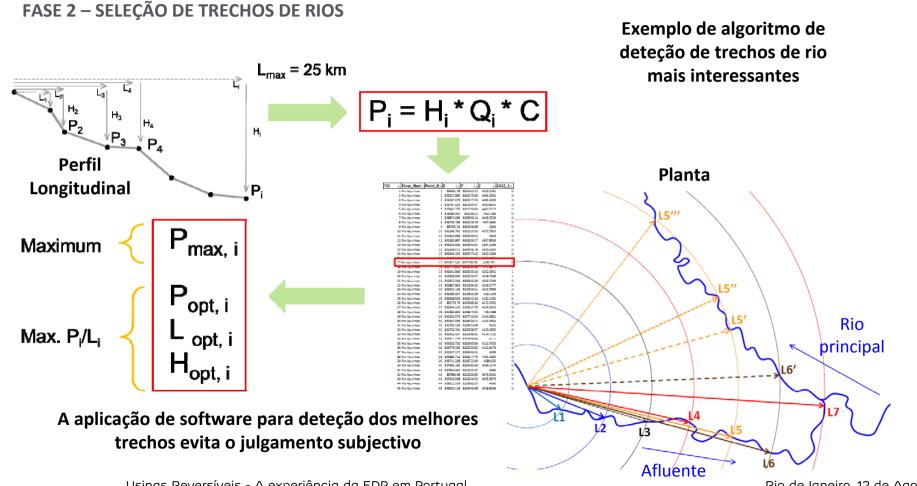
FASE 2 – SELEÇÃO DE TRECHOS DE RIOS

FASE 3 – DETEÇÃO DE ZONAS PARA CONSTITUIÇÃO DE RESERVATÓRIOS


RECURSO A SISTEMAS DE INFORMAÇÃO GEOGRÁFICA (SIG)

Estudos Preliminares e de Inventário de Novos Centros Produtores Reversíveis

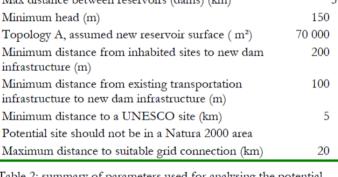
Mapeamento do potencial para implantação de usinas reversíveis – Estudos e Metodologias


FASE 1 – SELEÇÃO DE BACIAS HIDROGRÁFICAS

Ranking baseado (p. ex.) no declive médio e no comprimento dos cursos de água

Estudos Preliminares e de Inventário de Novos Centros Produtores Reversíveis

Mapeamento do potencial para implantação de usinas reversíveis - Estudos e Metodologias



Mapeamento do potencial para implantação de usinas reversíveis - Estudos e Metodologias

FASE 3 – DETEÇÃO DE ZONAS PARA CONSTITUIÇÃO DE RESERVATÓRIOS

- Reservatórios existentes
- Deteção de zonas planálticas adequadas a distâncias e com desníveis requeridos

Initial physical characteristics for transformation ³	Value
Minimum size of existing reservoir (m³)	1 million
(or) minimum hydropower capacity (MW)	1
Max distance between reservoirs (dams) (km)	5
Minimum head (m)	150
Topology A, assumed new reservoir surface (m²)	70 000
Minimum distance from inhabited sites to new dam infrastructure (m)	200
Minimum distance from existing transportation infrastructure to new dam infrastructure (m)	100
Minimum distance to a UNESCO site (km)	5
Potential site should not be in a Natura 2000 area	
Maximum distance to suitable grid connection (km)	20

Selected second reservoir site Candidate second reservoir site **Existing dam**

Table 2: summary of parameters used for analysing the potential

EUR 25239 EN – Joint Research Centre – Institute for Energy and Transport

Title: Pumped-hydro energy storage: potential for transformation from single dams

Analysis of the potential for transformation of non-hydropower dams and reservoir hydropower schemes into pumping hydropower schemes in Europe

Mapeamento do potencial para implantação de usinas reversíveis – Estudos e Metodologias

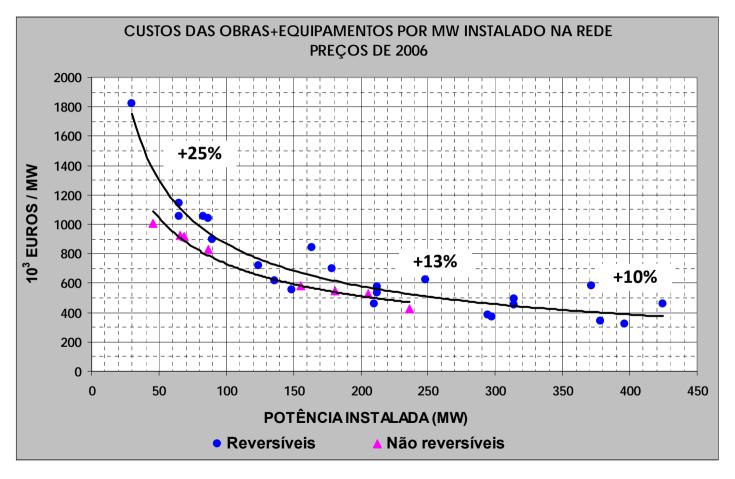
Metodologia:

- Seleção de zonas potencialmente mais interessantes, por observação inicial da carta de relevo (zonas planálticas com vertentes altas e íngremes);
- Exclusão de locais em áreas com estatuto de conservação;
- Pesquisa mais pormenorizada de sítios por observação visual, nas cartas militares 1:25.000 e com apoio do "Google Earth", privilegiando:
 - quedas superiores a 500 m;
 - circuitos hidráulicos com menos de 7 km;
 - armazenamentos úteis em ambos os reservatórios com mais de 1 hm³;
- Seleção empírica de locais potencialmente interessantes (estimativa de queda, extensão de circuito hidráulico e volume útil mobilizável).

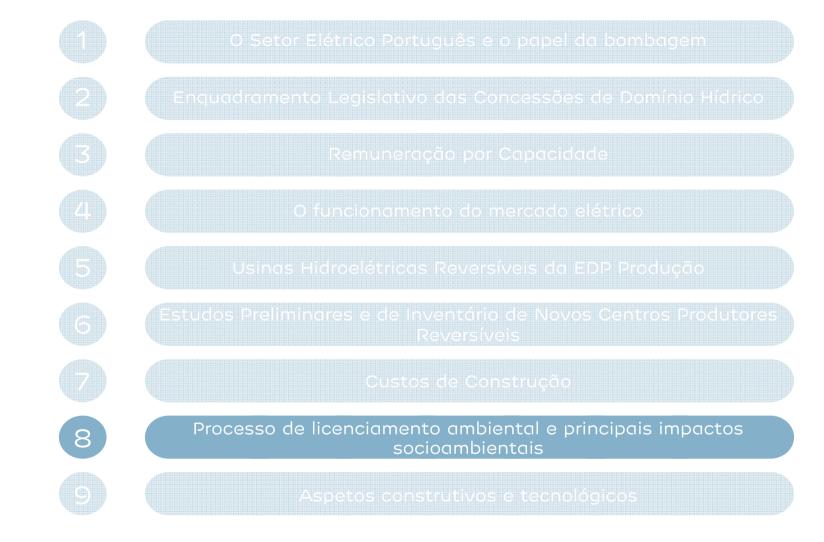
Custos de Construção

Aspetos técnicos que podem implicar **aumento de custo nas soluções reversíveis** relativamente a soluções convencionais equivalentes

Obras Civis


- **Bocais** tomada de água / restituição (dupla função);
 - Chaminés de equilíbrio (manobras bombagem);
- Maior submergência dos grupos (maior extensão dos túneis / poços de acesso e saída de energia, maiores cargas a montante, ...);
 - Criação de condições hidráulicas para bombagem maior extensão do circuito hidráulico ou escavação do leito do rio a jusante.

Equipamentos

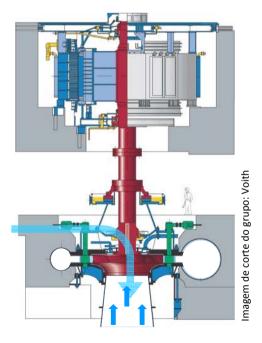

- Grupos;
- Hidromecânico da restituição.

Variação do custo específico com a potência

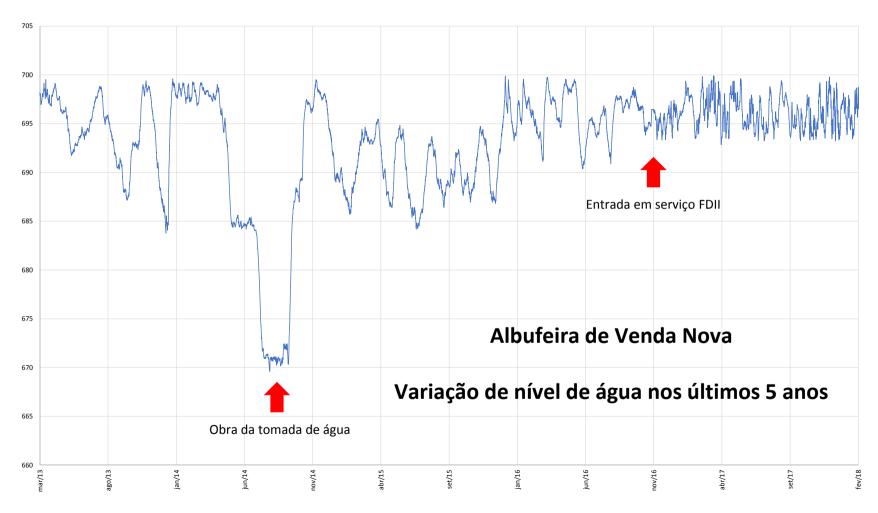

Principais Impactos Socioambientais

Impactos "exclusivos" das usinas reversíveis

- Modelação da qualidade da água mais complexa (particularmente no caso dos reforços de potência);
- Maior frequência de variação do nível de água da albufeira e consequentes efeitos ao nível da faixa interníveis (erosão e impacte visual de difícil minimização);
- Eventual afetação da qualidade ecológica do troço a jusante da Restituição, decorrente dos diferentes modos de operação (bombagem e turbinamento);
 - Rentabilização/otimização das infraestruturas existentes, no caso dos reforços de potência.

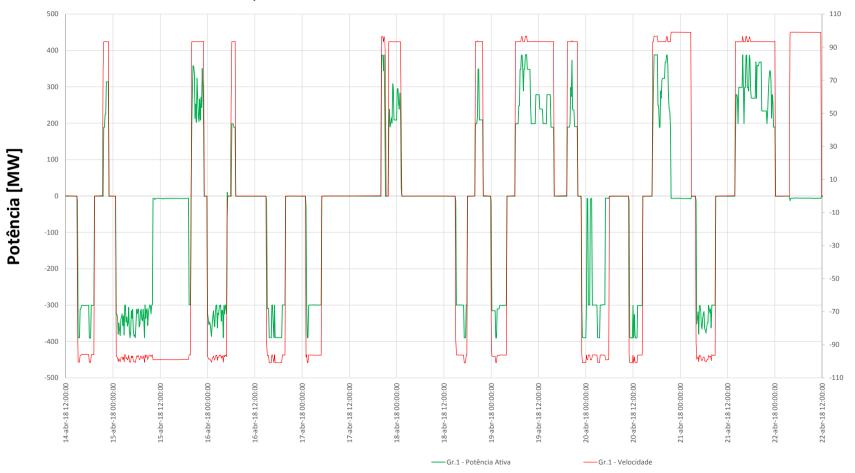


Arranque em modo bomba – Conversor Estático de Frequência

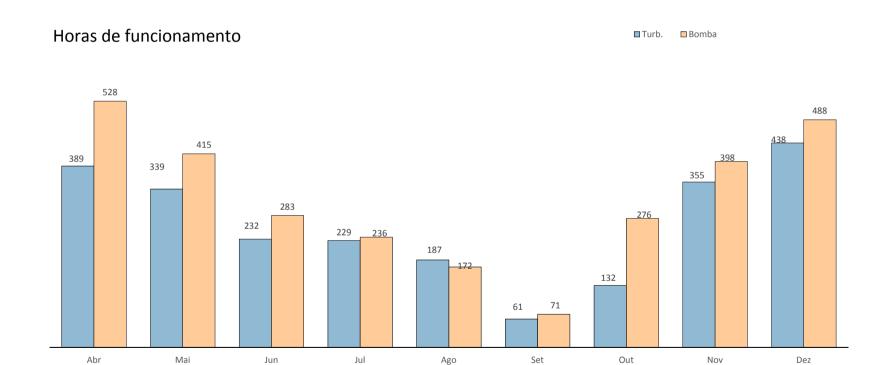


O arranque dos grupos em modo bomba pode ser realizado, entre outros, com recurso a:

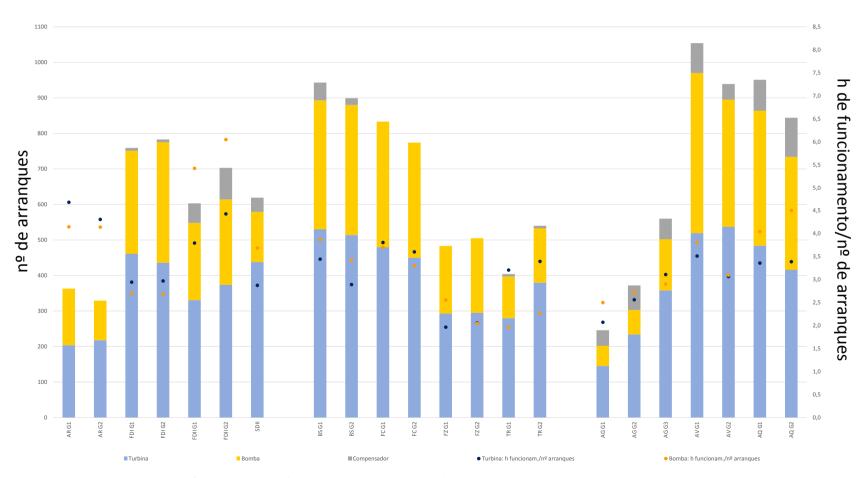
- ✓ Conversor estático de frequência (CEF)
 - 1. Ligar auxiliares
 - 2. Desafogar a roda
 - 3. Ligar excitação
 - 4. Ligar CEF
 - 5. Ligar sincronização
 - 6. Afogar a roda
 - 7. Desligar CEF



Aspetos construtivos e tecnológicos Exploração


Exploração

Frades II - Grupo 1: 14/04/2018 a 22/04/2018


Exploração

Frades II - Desempenho operacional 2017

Exploração

Nº de arranques em TURBINA, BOMBA e COMPENSADOR - 2017

Muito obrigado!

Autores:

Ana Cristina Nunes – Direção Regulação e Mercados Cristina Sarmento – Direção Engenharia de Barragens Filipe Duarte – Direção Otimização e Gestão de Ativos Hídricos José Carlos Sousa – Área de Risco e Continuidade do Negócio Teresa Cavaco – Direção de Sustentabilidade Vítor Ribeiro – EDP Internacional