O Hidrogênio e a Transição Energética do Brasil

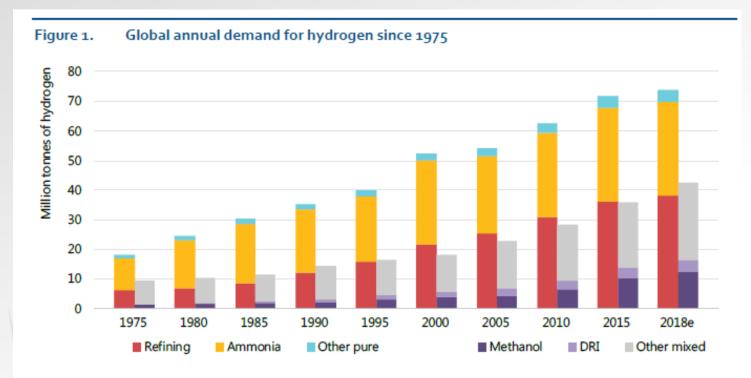
Webinar GESEL: "Hidrogênio e a Transição Energética"

Giovani Machado

Diretor de Estudos Econômico-Energéticos e Ambientais

Sobre a EPE – Empresa de Pesquisa Energética

www.epe.gov.br


Empresa pública federal vinculada ao Ministério de Minas e Energia

Desenvolvemos estudos e estatísticas energéticas para subsidiar a formulação, implementação e avaliação da política energética nacional

Integrante do Conselho Nacional de Política Energética (CNPE) com direito a voto Panorama do mercado de hidrogênio

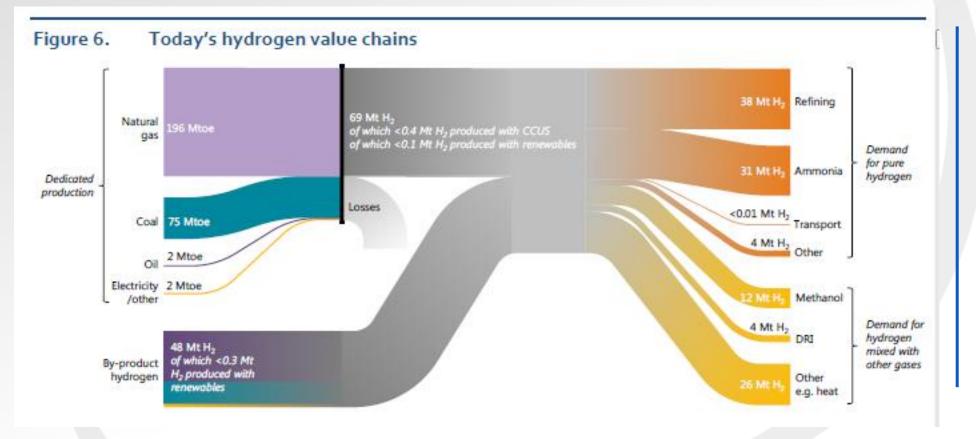
Panorama do mercado de hidrogênio

Notes: DRI = direct reduced iron steel production. Refining, ammonia and "other pure" represent demand for specific applications that require hydrogen with only small levels of additives or contaminants tolerated. Methanol, DRI and "other mixed" represent demand for applications that use hydrogen as part of a mixture of gases, such as synthesis gas, for fuel or feedstock.

Source: IEA 2019. All rights reserved.

Around 70 MtH₂/yr is used today in pure form, mostly for oil refining and ammonia manufacture for fertilisers; a further 45 MtH₂ is used in industry without prior separation from other gases.

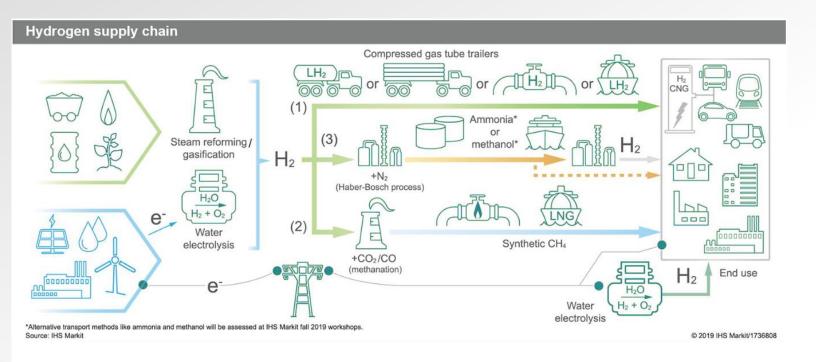
Fonte: https://webstore.iea.org/download/direct/2803


- Mercado global de geração de hidrogênio é de ~ US\$ 117 bilhões.
- Perspectiva: +4% a.a. até 2027.
- Principais players: Air Liquide, Linde, Messer, Hydrogenics, Inox, e Air Products and Chemicals
- Regra de bolso: -1/3 refino, -1/3 amônia e +1/3 outros (metanol, etc.)

Fonte:

https://www.grandviewresearch.com/industryanalysis/hydrogen-generation-market

Cadeia de valor do hidrogênio

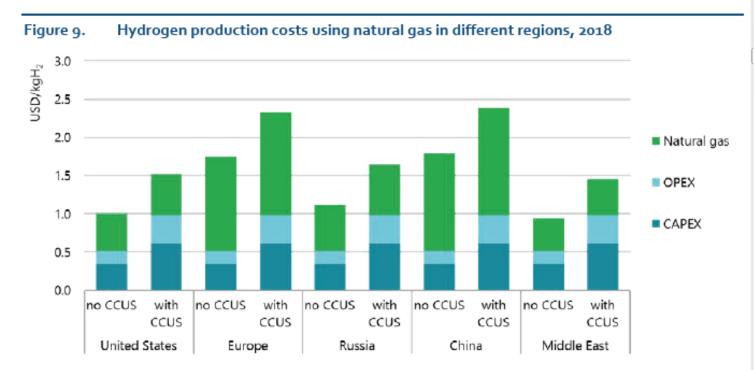


- Gás natural é principal matéria prima:
 - 60% da produção total de H₂
 - 71% da produção dedicada de H₂
- H₂ verde é pouco significativo hoje.

Fonte: https://webstore.iea.org/download/direct/2803

Rotas tecnológicas do hidrogênio

Rotas tecnológicas do hidrogênio



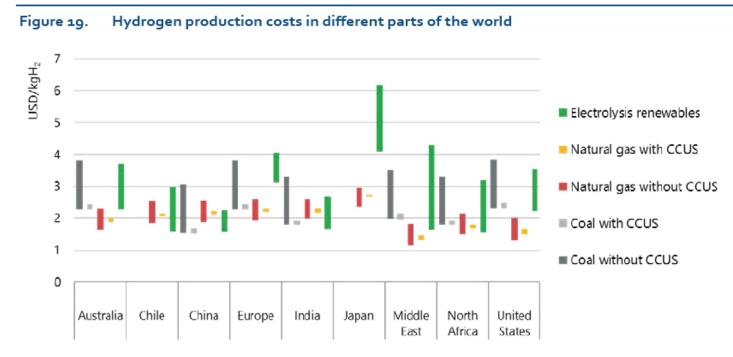
Fonte: https://ihsmarkit.com/products/hydrogen-global-market.html

- Principal rota
 - Reforma a vapor de metano: 70%
 - processo mais econômico
- Outras rotas
 - > Eletrólise, pirólise, etc.
 - Formas híbridas
 - Maio (2018): planta da SoCalGas, Stars Corp. e PNNL
 - água e gás natural em planta solar com CCS
- Geração de Hidrogênio: centralizada x descentralizada

Competitividade da geração de H₂ usando gás natural

Notes: kgH₂ = kilogram of hydrogen; OPEX = operational expenditure. CAPEX in 2018: SMR without CCUS = USD 500-900 per kilowatt hydrogen (kWHz), SMR with CCUS = USD 900-1 600/kWHz, with ranges due to regional differences. Gas price = USD 3-11 per million British thermal units (MBtu) depending on the region. More information on the underlying assumptions is available at www.iea.org/hydrogen2019

Source: IEA 2019. All rights reserved.

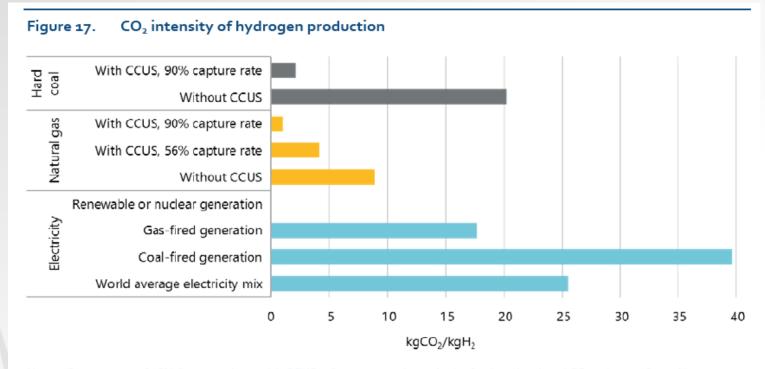

Availability of low-cost gas is a crucial cost determinant for SMR-based hydrogen.

Fonte: https://webstore.iea.org/download/direct/2803

- Fatores de competitividade
 - Disponibilidade de gás natural
 - Preço do gás natural
- Outros desafios relevantes
 - Segurança energética
 - Emissões de carbono
 - Custos de rotas alternativas

Competitividade da geração de H₂ por rota e região/país

Notes: Bars indicate range between near- and long-term hydrogen production costs, which include a CO_2 price of USD 25/t CO_2 in the near term and USD 100/t CO_2 in the long term. For options from coal and natural gas, the higher value indicates the long-term costs (due to the increasing CO_2 price), whereas for hydrogen from renewable electricity the lower value indicates the long-term costs.

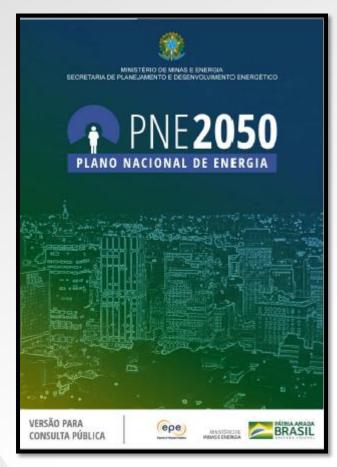

Source: IEA 2019. All rights reserved.

Fonte: https://webstore.iea.org/download/direct/2803

- Maior competitividade do gás natural hoje, mas riscos no futuro
 - Ativos encalhados em cenário "descarbonização profunda"
 - Queda de custos acelerada de H₂ verde
- Menor competitividade do H₂ verde hoje, mas oportunidades no futuro
 - Aceleração da queda de custos de produção
 - Mundo com "Descarbonização profunda"
- Papeis de rotas a biomassa, resíduos, nuclear e híbridas

Impactos sobre emissões de CO₂ da geração de H₂ fóssil

Notes: Capture rate of 56% for natural gas with CCUS refers to capturing only the feedstock-related CO_2 , whereas for 90% capture rate CCUS is also applied to the fuel-related CO_2 emissions; CO_2 intensities of electricity taking into account only direct CO_2 emissions at the electricity generation plant: world average 2017 = 491 g CO_2 /kWh, gas-fired power generation = 336 g CO_2 /kWh, coal-fired power generation = 760 g CO_2 /kWh. The CO_2 intensities for hydrogen also do not include CO_2 emissions linked to the transmission and distribution of hydrogen to the end users, e.g. from grid electricity used for hydrogen compression. More information on the underlying assumptions is available at www.iea.org/hydrogen2019.


Source: IEA 2019. All rights reserved.

- Mesmo H₂ "cinza" e "azul" podem resultar em abatimento emissões de carbono
- Faz sentido trancamento tecnológico para obter economia de escala de H₂ verde?
- Faz sentido perder sinergias e economia de escopo com H₂ "cinza", "azul" e outros?
- Em que condições?

Fonte: https://webstore.iea.org/download/direct/2803

Papel do H2 na transição energética do Brasil: implicações de políticas

Plano Nacional de Energia 2050

http://www.mme.gov.br/c/document_library/get_file?uuid= 71e6850d-e7f9-4962-331e-2316b93c0480&groupId=36208

Consulta Pública nº 95 de 13/07/2020

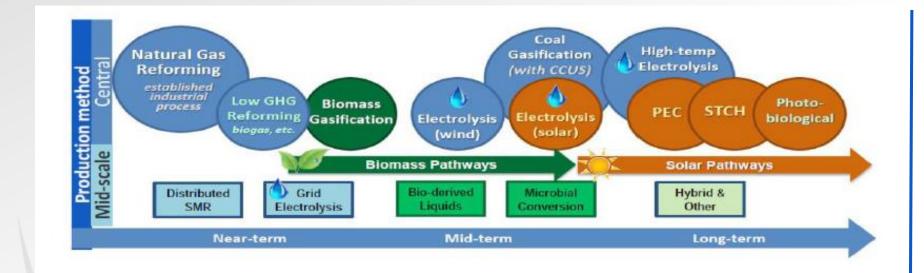
Prazo: 13/07/2020 à 13/10/2020

Tecnologias Disruptivas - Hidrogênio

Principais desafios:

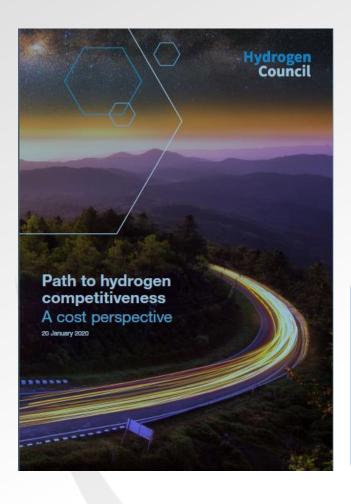
Elaboração de normatização para uso, transporte e armazenamento do hidrogênio

Recomendações:


Desenhar aprimoramentos regulatórios relacionados à qualidade, segurança, infraestrutura de transporte, armazenamento e abastecimento

Articular com outras instituições internacionais que tenham iniciativas na área de hidrogênio

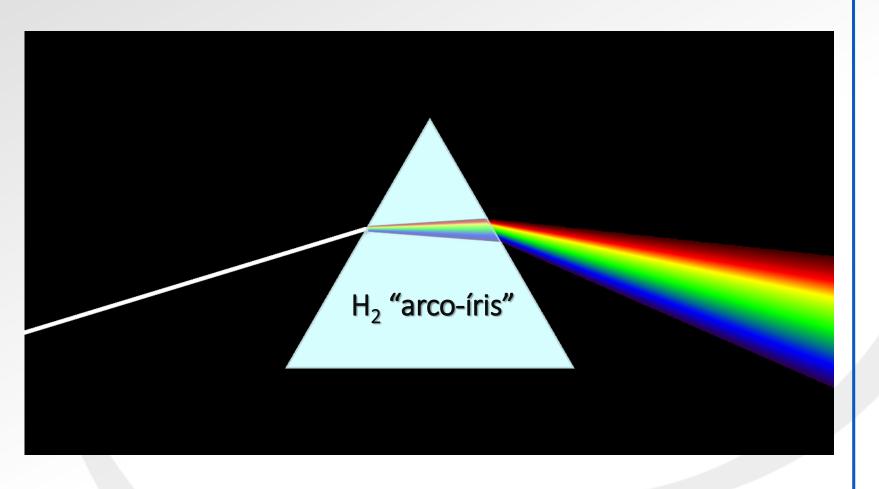
Dinâmica de inovação do hidrogênio



- Decisão estratégica:
 - Neutralidade?
 - Trancamento?
 - Incentivos diferenciados?
- Tendências de mercado
 - Economia de escala
 - Economia de escopo

Fonte: http://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen Dec2017 WEB.aspx

Broad Hydrogen Production Portfolio¹⁴


Planos e cooperações internacionais em hidrogênio

- US National Hydrogen Energy Vision and Roadmap
- EU Green New Deal => Green H₂
- Germany's National Hydrogen Strategy
- Japan's Basic Hydrogen Strategy
- Hydrogen Economy Roadmap of Korea
- **>** ...
- Hydrogen Council: compreende empresas líderes de energia, transporte e outras com interesse em H2. Investimentos de € 1,4-1,9 Bilhões por ano.
 - Air Liquide, Alstom, AngloAmerican, BMW, Daimler, Engie, Honda, Hyndai, Kawasaki, Shell, The Linde Group, Total, Toyota, Audi, Iwarani, Plastic Omnium, Equinor,, Mitsui, Plug Power, Faber, Fureci, First Element Fuel, Gore, Toyota Tsusho.

Fonte: http://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen Dec2017 WEB.aspx

Estratégia nacional do hidrogênio e transição energética

- > Transição energética do Brasil
- Aproveitamento das vantagens competitivas nacionais
- Gás natural, etanol, resíduos, eólica, solar, nuclear, etc.
 - Economia de escala
 - Economia de escopo
 - Sinergias estratégicas
 - Formas híbridas
- Neutralidade tecnológica
- Desenvolvimento e acoplamento de mercados
- Parceiras internacionais amplas

Obrigado!

Avenida Rio Branco, 1 - 11° andar 20090-003 - Centro - Rio de Janeiro www.epe.gov.br

