

Webinar on International Perspectives on SMR (Perspectivas Internacionais dos Reatores de Pequeno Porte - SMR) uma parceria do GESEL com a ABDAN e o Instituto ICT RESEL, 10 March 2022 – Virtual on WebEx

Advances in Small Modular Reactor Technology Developments for Near Term Deployment Prospects and Challenges

Dr. M. Hadid Subki

Technical Lead, SMR Technology Development Nuclear Power Technology Development Section Division of Nuclear Power, IAEA Department of Nuclear Energy

email: SMR@IAEA.ORG

Driving Factors & Opportunities for SMRs

SMR: Categorization and First 10 Years of Deployment

SMR: Major Technology Lines

Marine-based SMRs and Microreactors

Advantages, Issues & Challenges

Issues and Actions for Deployments

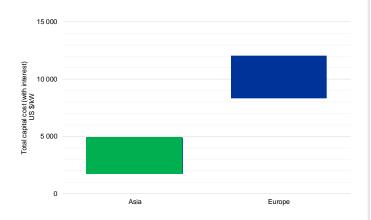
IAEA/NENP/NPTDS/SMR/MHS/10Mar22

Challenges in Countries

- Unless nuclear energy adapts to the new energy portfolios by being competitive and flexible, expansion of nuclear power will be hard
- Even more significant when the grid capacity and energy distribution is limited, such as in case of several embarking countries
- Dynamic energy market and governments' energy policies to increase share of renewables causes increasing need for NPPs to operate in "flexible" modes(*)
- SMRs and Microreactors will be a part of the nuclear generation from this decade

(*) i.e. load following, frequency control, or abrupt changes to output upon requests from grid operators

"Every new NPP is the first NPP for the grid"



De-risking NPP Newbuild Project

Long construction times, design and manufacturing complexity, and FOAK issues, are reasons behind the high construction costs and delivery times for nuclear newbuild.

Construction cost ranges for recent nuclear newbuild projects in Western Europe (France, Finland and the UK) and Asia (the UAE, Japan, Republic of Korea and China). <u>Source</u>: *Climate Change and Nuclear Power 2020, IAEA.*

Key success factors:

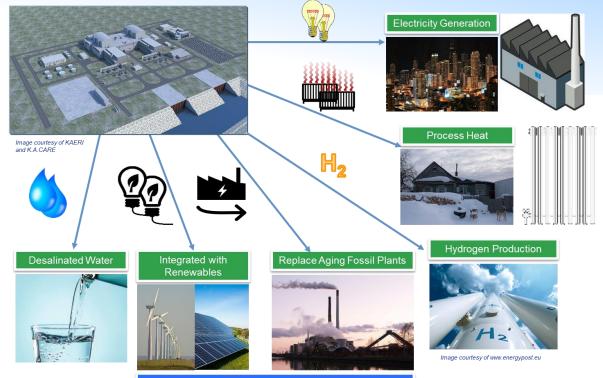
- Robust supply chain
- Simple and proven designs (with an operating 'reference plant');
- Close cooperation with the regulator;
- Sensible, risk informed contracting models;
- Proven contractors with experienced teams;
- 'Lessons learned' from other NPP projects;
- State of the art approaches to project and risk management;
- Reliance on IAEA peer review missions
 and advisory services

Driving Factors & Opportunities for SMRs

Cost Affordability

Small Power, Innovation, Standardization

Short Construction Span

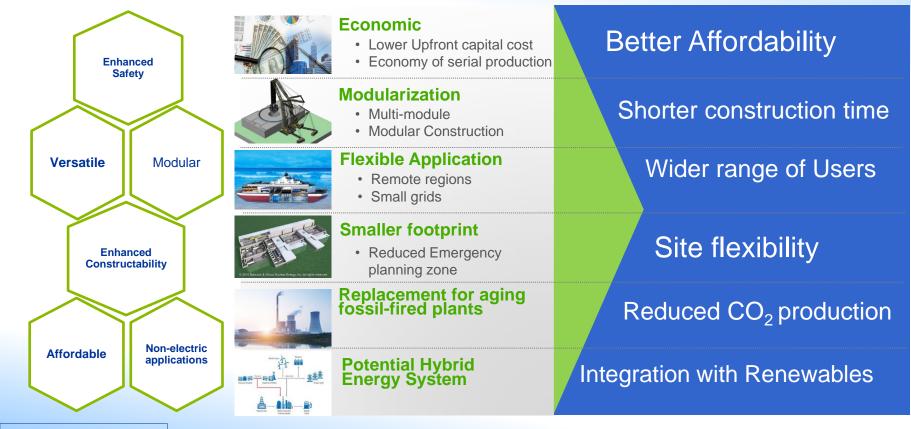

Design Simplification, Modularization

Energy Resilience

Flexibility and ensured energy supply

Energy Sustainability

Hybrid with Renewables, Replace Retiring Fossil Plants



A viable option to contribute to Climate Change Mitigation

Typically up to 300 MWe, High Degree of Modularity, Option to Energy Supply in Countries with Smaller Grids; Contribute to Climate Change Mitigation

Development Objectives of Small Modular Reactors

How SMRs answer the challenges?

Some Key Challenges for SMRs

First-of-a-Kind Technology Risks

Time and cost of getting to market and/or proven technology

Newcomers need Reference Plant

National programmatic cost for newcomers vs project cost for the unit

Regulatory preparedness to license FOAK and/or advanced designs

Prediction of the level of demand, generating cost versus alternative (\$)

Which funding and financing models?

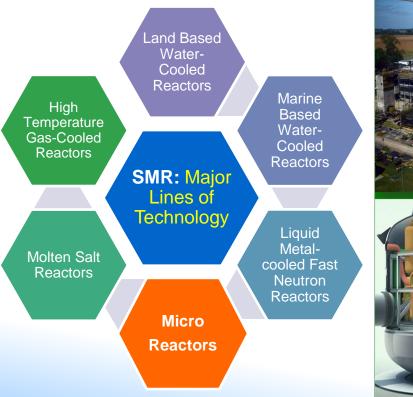
Key Drivers for SMRs

Shorter construction period (\$)

Design simplification thru standardization

Modularization, factory construction and enhanced transportability

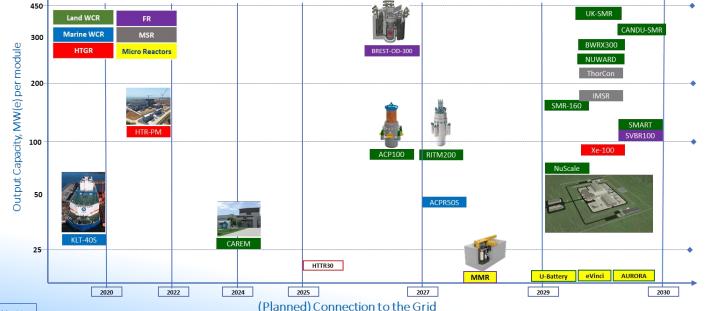
Lower upfront capital cost (\$)


Smaller site footprint

Scalability through multi-module (\$)

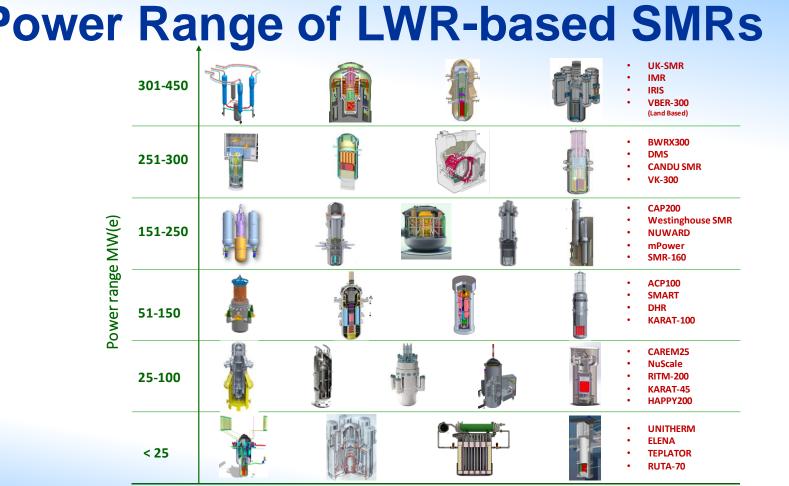
Non-Electric Apps, grid suitability and flexible operation

A categorization of SMR Technology



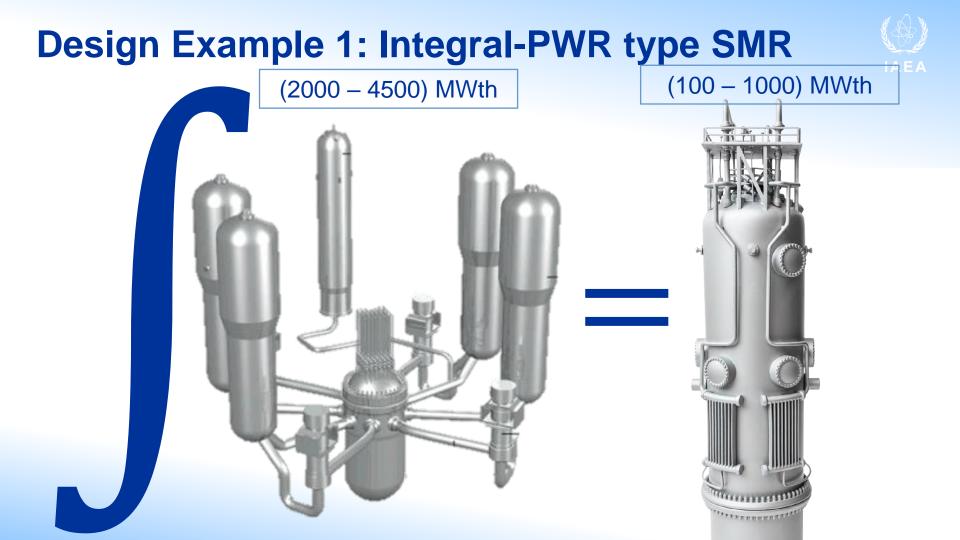
First 10-year Deployment Horizon

The four (4) SMR Forerunners: 2 in operation, 2 under construction



IAEA/NENP/NPTDS/SMR/MHS/10Mar22

LWR-type SMRs (Examples)



Land-based water-cooled reactors

Power Range of LWR-based SMRs

iPWRs: Safety Advantages & Challenges

Advantages	Issues / Challenges
No large piping connected to RPV → No Large-LOCA	Increased numbers of small-bore piping connections to the RPV
Coolant Pumps connected to RPV → Reduced leakage probability	Structural strength of RPV and joints; mechanical vibration; flow stability
Internal Control Rod Drive Mechanism → No CRD ejection accident	In-service inspection approach for in-vessel components
Wide use of Passive Safety Systems → Independence of power source	Passive system has lower driving heads; ADS reliability is critical
Modularization and NSSS components integration \rightarrow compact reactor building	Larger and taller RPV to house NSSS components: steam generators, etc.

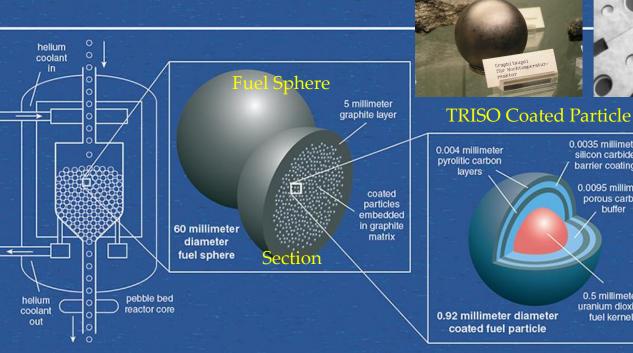
< 10

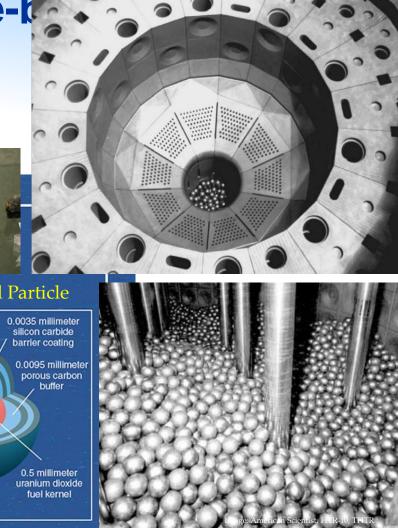
ABV-6E SHELF

Marine-Based SMRs (Examples)

On-Shore Deployment		Off-Shore Deployment		
KLT-40S	RITM-200M	ACPR-50S	SHELF	
		Fixed platform		
Design Status: Full Commercial Operation since May 2020 in the Akademik Lomonosov Floating NPP	Design Status: 6 prototype reactors were manufactured and installed on icebreakers (2 ones are in the process of testing)	Design Status: Completion of conceptual/ program design, preparation of project design.	Design Status: Detailed design underway	
 OKBM Afrikantov, Russian Federation Compact Loop PWR 150 MWt / 35 MWe per module x 2 modules for the FNPP Core Outlet Temp: 316°C Enrichment: 18.6% Refuel interval: 36 months Without onsite refuelling Spent fuel take back 	 OKBM Afrikantov, Russian Federation Integral-PWR 175 MWt / 50 MWe per module Core Outlet Temp: 318°C Enrichment: <20% Refuel interval: Up to 120 months Without onsite refuelling Spent fuel take back 	 CGNPC, China Integral-PWR 200 MWt / 50 MWe per module Core Outlet Temp: 321.8°C Enrichment: <5% Refuel interval: 30 months Whole heap refuelling 	 NIKIET, Russian Federation Integral-PWR 28.4 MWt / 6.6 MWe per module Core Outlet Temp: 310°C Enrichment: 19.7% Refuel interval: 6 years (8 for SHELF-M) Without onsite refuelling Spent fuel take back 	

Market Potential of Marine-based SMRs

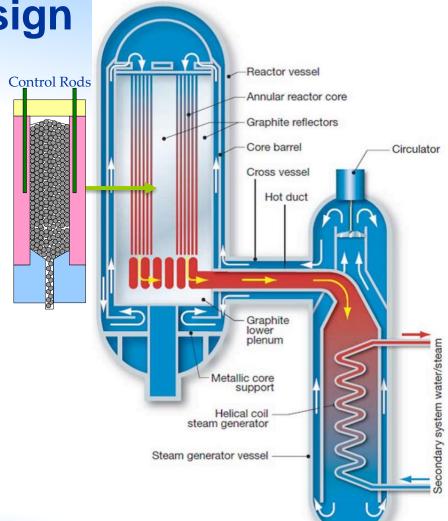

- East and South-East Asia
 - high seismicity and tsunami risk, high coastal population density, and limited domestic energy resources
- Middle East
 - Massive water desalination plants
- Africa and South America
 - small grids, high prices of electricity, water desalination, no incentives to develop large domestic nuclear infrastructure
- Russian Federation and northern Europe
 - Remote Arctic region power and heat supply, large mining operations, large offshore oil/gas operations


HTGR-type SMRs (Examples)

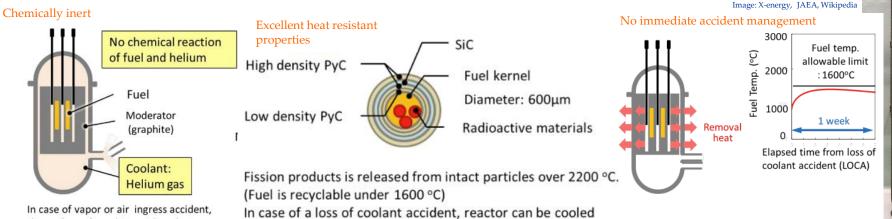
HTR-PM (China)	SC-HTGR (France)	GTHTR300 (Japan)	PBMR-400 (South Africa)	Xe-100 (X Energy, United States)
	ATHIBAGO &		Primary Helium Bower Hot Gas Uvest U	Control rods Pressure vessel Pebble bed Graphite side reflector Circulators Hot gas duct Helical Efection Helical Feed water inlet
Design Status: Achieved first criticality on 13 Sept 2021 in Shidao Bay, planned grid connection by end of 2021	Design Status: Conceptual Design	Design Status: Pre-Licensing; Basic Design Completed	Design Status: Preliminary Design Completed, Test Facilities Demonstration	Design Status: Basic design development . Applied for VDR in July 2020. To submit design certification to the U.S. NRC in 2021 for construction in 20252026
 INET Tsinghua University, China Modular pebble-Bed HTGR 250 MWt / 210 MWe x 2 modules Forced Circulation Core Outlet Temp: 750°C Enrichment: 8.5% Refuel interval: Online refuelling EA/NENP/NPTDS/SMR/MHS/14Jan22 	 Framatome Inc ,United States, France Prismatic-bloc HTGR 625 MWt / 272 MWe per module Forced convection Core Outlet Temp: 750°C Enrichment: <14.5% avg, 18.5% max Refuel interval: ½ core replaced every 18 months 	 JAEA, Japan Prismatic HTGR <600 MWt / 100~300 MWe Core Outlet Temp: 850- 950°C Enrichment: <14% Refuel interval: 48 months Multiple applications 	 PBMR SOC, Ltd, South Africa Pebble-Bed HTGR Forced Circulation 400 MWt / 165 MWe per module Core Outlet Temp: 900°C Enrichment: 9.5% Refuel interval: Online refuelling 	 X Energy, LLC, United States of America Modular HTGR Forced Helium Circulation 200 MWt / 82.5 MWe Core Outlet Temp: 750°C Enrichment: 15.5% Refuel interval: Online refuelling

Design Example 2: Pebble-k type HTGRs

- Spherical graphite fuel element with coated particles fuel
- On-line / continuous fuel loading and circulation
- Fuel loaded in cavity formed by graphite to form a pebble bed



Pebble-bed Reactor design parameters


Example: HTR-PM Parameters

Plant electrical power, MWe	210
Core thermal power, MW (one module)	250
Number of NSSS Modules	2
Core diameter, m	3
Core height, m	11
Primary helium pressure, MPa	7
Core outlet temperature, °C	750
Core inlet temperature, °C	250
Fuel enrichment, %	8.5
Steam pressure at turbine, Mpa	13.25
Steam temperature at turbine, °C	566
Efficiency, %	42

HTGR – Benefits

- ✓ Non-electric applications FEATURES ✓ Walk away safe ✓ Inert gas coolant ✓ High efficiency ✓ High Burnup possible
- Very different from first generation gas cooled graphite moderated reactors
 - Different fuel type (coated particle) retain radioactive material at 1600 °C
 - Different coolant (Helium) stable at high temperatures
 - (similar) Graphite core structure high thermal inertia

the surface of graphite oxidizes but safety of the core never be lost

passively and fuel temperature never exceeds 1600 °C.

In case of a loss of coolant accident, large heat capacity and high thermal conductivity of graphite absorbs heat.

Central broc **Fuel element** luter Purclutic Carbo Silicon Carbida nner Pyrolytic Carbon

rous Carbon Buffe

Fuel Kernel (UCO, UO-

HTGRs – Challenges

- The low power density leads to large reactor pressure vessels (but site requirements not larger)
 - Forging capability can also set limit on RPV diameter and power (e.g. Φ 6.7 m \rightarrow < 350 MWth in South Korea)
- Helium coolant has low density and thus requires high pressurization
- Helium coolant is non-condensable so a traditional containment cannot be used
- Coated particle fuel costs are expected to be higher
- Availability of licensing framework
- Supply Chain

Micro Reactors Emerging: Microreactors

- **Energy Well** >5 MMR Power range MW(e) -4 Westinghouse eVinci **U-Batterv** MoveluX AURORA . <2
- Several countries are developing
 Microreactors technology for potential
 deployment by 2030;
- *Typically* to generate from 1 to 10 MWe; designed for enhanced transportability to site by modularity;
- To supply power at remote sites with mining operations, island communities, oil platforms and maritime shipping.
- Deployment opportunities in remote areas in North America, Middle East, Africa, and the South-East Asian archipelagos.

Microreactors

Microreactors (others, in organizations' website)

Microreactors

IAEA/NENP/NPTDS/SMR/MHS/26Apr2021

Factors in Microreactors Development

Rationales

- More specific nuclear portfolios beyond 'known' SMRs
- The need for energy resiliency
- Power needs in regions inaccessible by known power generators / plants
- Power needs in cities / techno parks

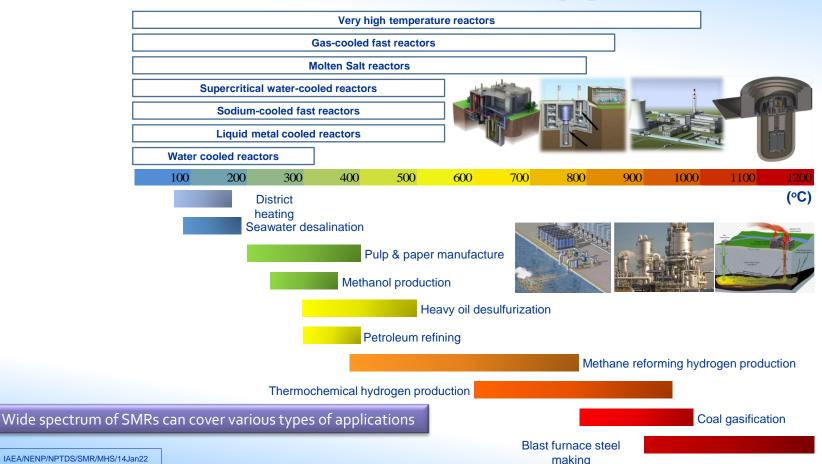
Pursued Advantages

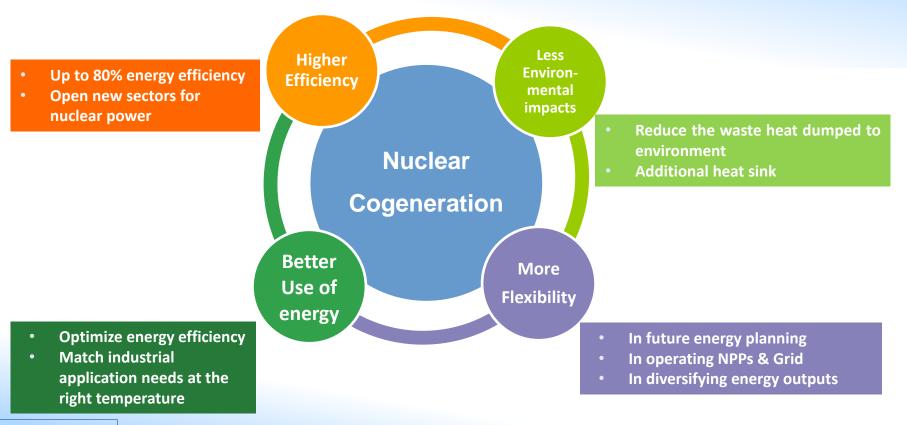
- New technologies with innovative inherent safety features
- Substantially lower capital cost
- Modularity, Mobility, more of "installation" than construction
- Long refueling interval or no refuel

Target Applications

- Microgrids for critical infrastructures
- Remote off-grid areas, minings
- Emergency power supply
- Wide spectrum non-electric apps
- Space and Naval applications (UUV)

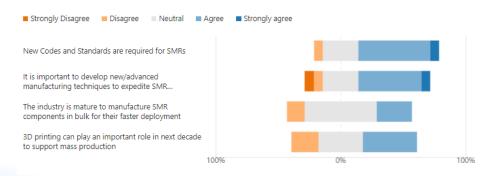
Potential Issues and Key Challenges


- Safeguards: factory-sealed cores, new configs.
- Security: remote off grid areas, attractive theft target of new fuels / higher enrichment
- Strategies for waste treatment and disposal
- Operator requirements, oversights / inspections


Westinghouse's eVinci micro reactor schematic (Image: SMR Booklet edition 2020)

SMR for Non-Electric Applications

Values of Nuclear Cogeneration



Codes and Standards for SMRs

- Key discussion points:
 - Are the existing international nuclear codes and standards adequate to facilitate the development and licensing of SMR technologies worldwide?
 - What are the key issues, prospects and impediments on design engineering, manufacturing process and technology qualification of novel components for SMRs?
 - How can SMR industries learn from other industrial sectors to support a diversified/ larger supply chain and enable factory modular construction?
 - What significant changes are foreseen for In-Service Inspection (ISI) and component In-Service Testing (IST) for SMRs compared to existing large reactors?

Experts' Survey result

Codes & Standards – Applicability to SMRs

Key Advantage #1: Enabling Design Simplification

- Minimized number of systems and components without compromising safety;
- Simplification to improve economics, maintainability and availability of components without compromising safety.

Key Advantage #2: Confirm a robust supply chain:

- Assure 'diverse' supply for replacement by manufacturers other than the original manufacturers;
- Improve the assurance of sustainable operation of the nuclear power plant.

Findings on Standardization:

- Standardization alone will not solve all issues in advanced reactor product development;
- *Excellence* in applying *advanced manufacturing* and *NDE techniques* are often proprietary; not readily shareable or standardized because it would benefit competitors
- The biggest challenge to quality product is to having the capability of designing, manufacturing and delivering, within time and budget, products that meet the requirements

SMR Development should increasingly apply codification and standardization of Advanced Manufacturing Techniques to realize high degree of Modularity

Advantages, Issues & Challenges

Technology aspects

- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.).
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno aspects

- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology issues

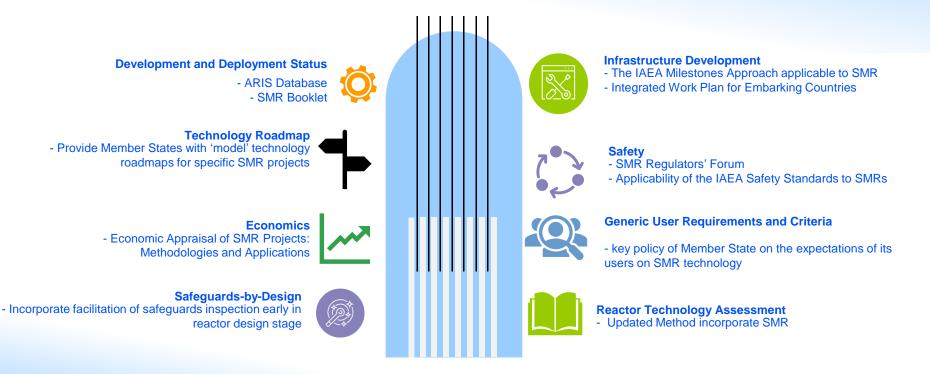
- Licensing of FOAK designs, particularly non-LWR technologies
- Prove of operability and maintainability
- Staffing for multi-module plant;
- Supply chain for multi-modules
- Optimum plant/module size
- Advanced R&D needs

Non-technology issues

- Time from design-to-deployment
- Highly competitive budget source for design development
- Economic competitiveness: affordability & generation cost
- Availability of *off-the-shelf* design for newcomers
- Operating scheme in an integration with renewables

Prospects and Actions for Deployments

Demonstration of Safety and Operational Performance of FOAK, Novel Designs & Technologies Continuity of Orders, cost competitiveness against alternatives, robust supply chain, and viable financing Option


SMR Deployment Competitiveness

Regulatory framework, licensing pathways: global deployment, need of harmonization?

Development of Nuclear Infrastructure for near-term deployment particularly in Embarking countries

IAEA Activities on SMRs (key examples)

8 December 1953

1 to 23 October 1957

11 December 1957

1959

10 December 2005

1958 to 1979

Thank you for your attention!

For inquiries, please contact: Small Modular Reactor Technology Development Team IAEA Division of Nuclear Power, Nuclear Power Technology Development Section E-mail: SMR@iaea.org

23 August 1979 Atoms for peace and Development...